

MS25-05

イオン交換固相抽出およびDelayカラムによる 水中のパーフルオロアルキル物質及び ポリフルオロアルキル物質の分析

Analyses of Per- and Polyfluoroalkyl Substances in water using ion exchange solid-phase extraction and LC-MS/MS with an Activated Carbon Delay Column.

高原 玲華、高橋 里奈、国枝 巧、菅野 賢、 石井 一行、林田 寛司、高柳 学 ジーエルサイエンス株式会社

- 1. PFASについて
- 2. Delayカラムの検討
- 3. 少充填量陰イオン交換固相抽出カラムを 用いたPFAS前処理
- 4. まとめ

PFASについて

PFAS (Per and Polyfluoroalkyl Substances) とは

PFAS(Per and Polyfluoroalkyl Substances)は、有機フッ素化合物の総称で耐熱性や耐薬品性があり、化学的に非常に安定した特性を持っている。 難分解性で残留性の高い性質であることから、体内に蓄積されやすいことが明らかとなり、近年各国で飲料水中の暫定の目標値が示されるようになった。

<u>各国における暫定の目標値(2022.5月現在)</u>

	PFOS	PFOA	備考
日本	50 r	ng/L	PFOS,PFOA,PFHxSの合計(2021)
米国	70 r	ng/L	PFOS,PFOA,の合計(2016)
ドイツ	300 ng/L	300 ng/L	(2006)
英国	300 ng/L	300 ng/L	(2010)
オーストラリア	70 ng/L	560 ng/L	PFOSについてはPFHxSとの合計

PFAS分析における課題

PFASは、分析装置や器具・部品類に多く用いられている。また、空気中に も存在するといわれている。

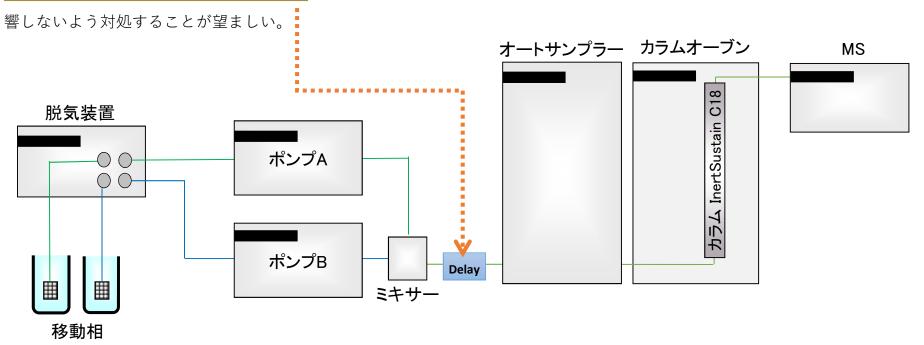
前処理操作時や測定時にブランクとして混入すると、分析結果に影響を及 ぼすためブランク対策が必要である。

検討1:**高純度アクティブカーボンを充填したDelayカラム**を使用して、

分析装置のバックグラウンドを低減

検討 2:**固相抽出カラムを少充填量化**して、

操作工程を簡略化した前処理方法の確立


検討1: Delayカラムの検討

Delayカラムとは?

"令和2年5月28日 「水質汚濁に係る人の健康の保護に関する環境基準等の施行等について」(環境省通知)より"

(注9) PFOS 及びPFOA の保持時間に相当する位置に移動相及び高速液体クロマトグラフ質量分析計又は高速液体クロマトグラフ・タンデム質量分析計(以下「LC/MS 又はLC/MS/MS」という。)由来の不純物のピークが発生する場合は、<u>移動相溶媒送液ポンプと</u> 試験液注入口の間に固相カラムを装着して不純物のピークを試験液のPFOS 及びPFOA のピークから分離する等により、定量結果に影

Delayカラムに要求される事項

- → 移動相や装置由来のPFASブランクを十分に遅らせることができること
- → 圧力の上昇が小さいこと

高純度アクティブカーボン型Delayカラムについて

オクタデシルシリカゲル(ODS)よりも保持力が強い高純度アクティブカーボンをHPLCカラム用ハードウェアに充填し、Delayカラムとして使用した。

粒子径が大きいため低圧であるのが特徴で ある。

Delay Column for PFAS (3.0 x 30 mm)

分析条件

PFCAs

		Q1/Q3	DP	EP	CE	CXP
C4 Perfluorobutanoic acid	PFBA	213/169	-45	-10	-14	-9
C5 Perfluoropentanoic acid	PFPeA	263/219	-50	-10	-11	-9
C6 Perfluorohexanoic acid	PFHxA	313/269	-50	-10	-15	-9
C7 Perfluoroheptanoic acid	PFHpA	363/319	-55	-10	-14	-9
C8 Perfluorooctanoic acid	PFOA	413/369	-45	-10	-14	-9
C9 Perfluorononanoic acid	PFNA	463/419	-65	-10	-16	-9
C10 Perfluorodecanoic acid	PFDA	513/469	-65	-10	-14	-9
C11 Perfluoroundecanoic acid	PFUnDA	563/519	-65	-10	-16	-9
C12 Perfluorododecanoic acid	PFDoDA	613/569	-40	-10	-17	-9
C13 Perfluorotridecanoic acid	PFTrDA	663/619	-50	-10	-19	-9
C14 Perfluorotetradecanoic acid	PFTeDA	713/669	-50	-10	-15	-9
C16 Perfluorohexadecanoic acid	PFHxDA	813/769	-65	-10	-17	-9
C18 Perfluorooctadecanoic acid	PFOcDA	913/869	-65	-10	-17	-12

PFASs

成分名		Q1/Q3	DP	EP	CE	CXP
C4 Perfluorobutanesulfonic acid	PFBS	299/80	-80	-10	-62	-3
C5 Perfluoropentanesulfonic acid	PFPeS	349/80	-100	-10	-70	-13
C6 Perfluorohexanesulfonic acid	PFHxS	399/80	-80	-10	-80	-3
C7 Perfluoroheptanesulfonic acid	PFHpS	449/80	-100	-10	-104	-15
C8 Perfluorooctanesulfonic acid	PFOS	499/80	-90	-10	-95	-3
C9 Perfluoronanonesulfonic acid	PFNS	549/80	-105	-10	-116	-13
C10 Perfluorodecanesulfonic acid	PFDS	599/80	-80	-10	-80	-3
C12 Perfluorododecanesulfonic acid	PFDoDS	699/80	-115	-10	-126	-13

ウェリントンラボラトリーズ製混合標準原液 PFAC-MXCを使用

内部標準(サロゲート)

Q1/Q3	DP	EP	CE	CXP
217/172	-30	-10	-14	-31
268/223	-25	-10	-12	-11
318/273	-30	-10	-14	-47
367/322	-30	-10	-14	-19
421/376	-30	-10	-14	-9
472/427	-30	-10	-14	-11
519/474	-40	-10	-16	-13
570/525	-60	-10	-16	-7
615/570	-40	-10	-18	-15
715/670	-45	-10	-18	-17
302/80	-75	-10	-70	-13
402/80	-75	-10	-84	-13
507/80	-110	-10	-90	-13
	217/172 268/223 318/273 367/322 421/376 472/427 519/474 570/525 615/570 715/670 302/80 402/80	217/172 -30 268/223 -25 318/273 -30 367/322 -30 421/376 -30 472/427 -30 519/474 -40 570/525 -60 615/570 -40 715/670 -45 302/80 -75 402/80 -75	217/172 -30 -10 268/223 -25 -10 318/273 -30 -10 367/322 -30 -10 421/376 -30 -10 472/427 -30 -10 519/474 -40 -10 570/525 -60 -10 615/570 -40 -10 715/670 -45 -10 302/80 -75 -10 402/80 -75 -10	217/172 -30 -10 -14 268/223 -25 -10 -12 318/273 -30 -10 -14 367/322 -30 -10 -14 421/376 -30 -10 -14 472/427 -30 -10 -14 519/474 -40 -10 -16 570/525 -60 -10 -16 615/570 -40 -10 -18 715/670 -45 -10 -18 302/80 -75 -10 -70 402/80 -75 -10 -84

ウェリントンラボラトリーズ製混合標準原液MPFAC-C-ESを使用

分析条件

HPLC C	ond	iti	on
--------	-----	-----	----

System	Nexera X2(Shimadzu)
Column	InertSustain C18 HP (GL Sciences Inc.) 3 μ m 2.1 \times 150 mm I.D. Delay column for PFAS (GL Sciences Inc.) 3.0 \times 30 mm I.D.
Elution	A) 10 mM CH ₃ COONH ₄ in H ₂ O B) Acetonitrile

Gradient

Time	Α%	В%
0.0	80	20
2.0	80	20
15.0	0	100
17.0	0	100
17.1	80	20
23.0	80	20

Flow rate

0.3 mL/min

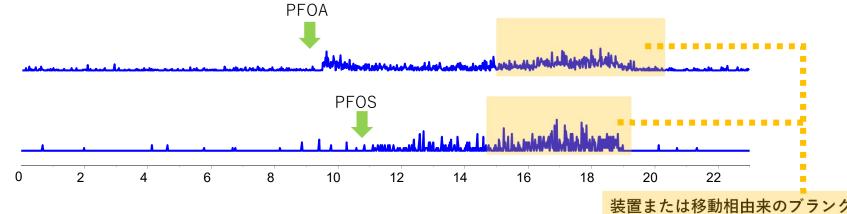
Col. Temp.

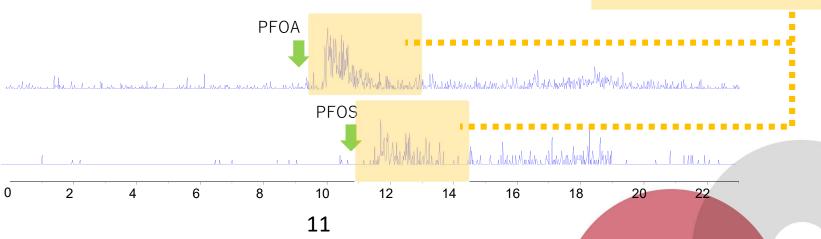
40°C

Injection Vol.

 $2~\mu L$

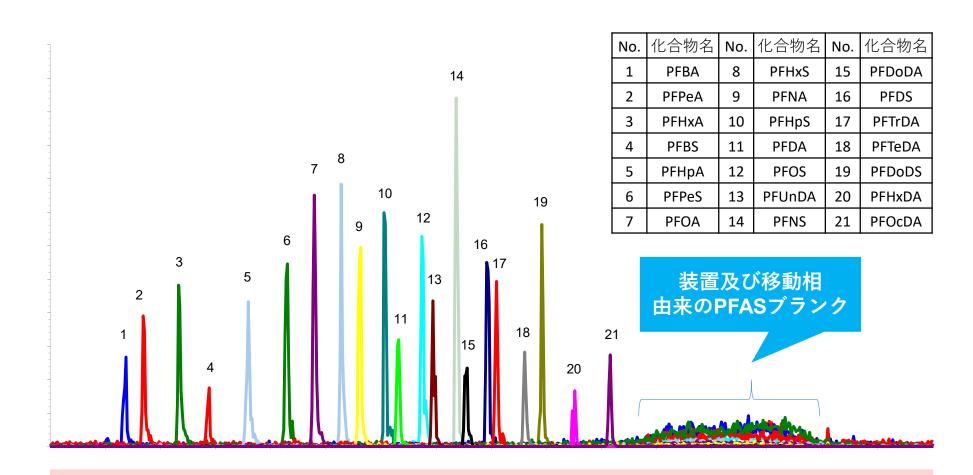
MS/MS Condition


System	400	00 QTRAP	(SCIEX)		
Mode	ESI	, Negative	e, MRM			
CUR	CAD	IS	TEM	GS1	GS2	ihe
20	12	-3700	400	30	30	on


高純度アクティブカーボン型Delayカラムの遅延効果

高純度アクティブカーボン型Delayカラムの遅延効果をODS型Delayカラムと比較した。 ODS型Delayカラムに比べて移動相・装置由来のバックグラウンドが遅れて検出されており、測定対象成分のPFOS、PFOAのピークより十分後ろに検出されることが確認できた。

高純度 アクティブ カーボン型 Delayカラム



一般的な Delayカラム (ODS)

高純度アクティブカーボン型Delayカラムの遅延効果

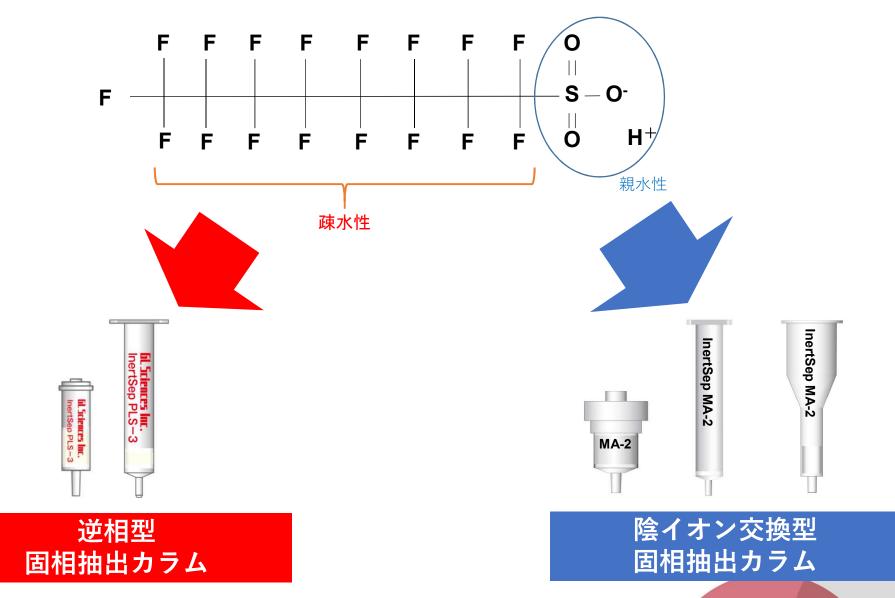
21成分のPFASにおける遅延効果を確認した。

移動相・装置由来のブランクは測定対象成分よりも後ろに検出された。

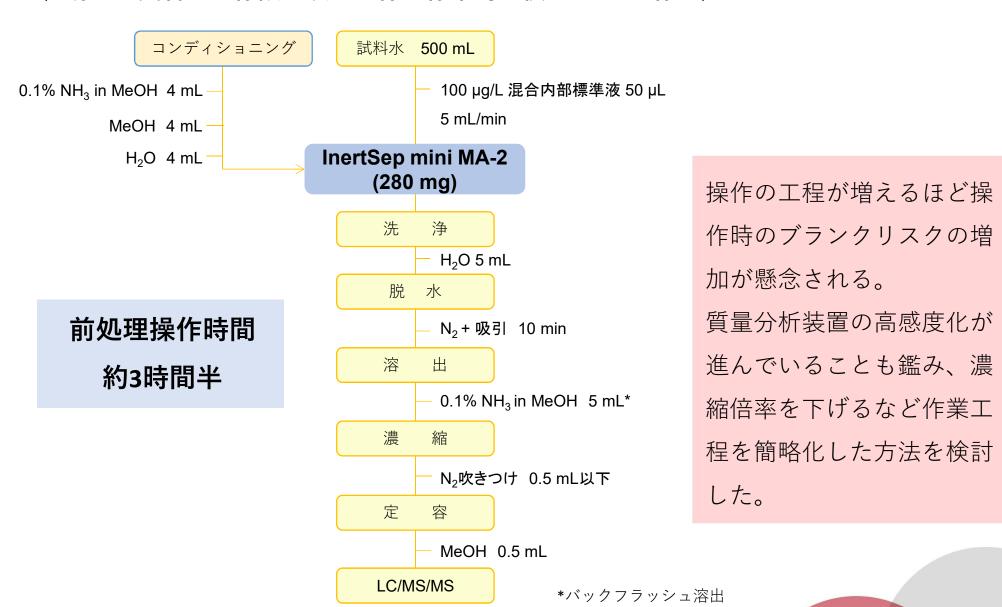
高純度アクティブカーボン型Delayカラムの装着時圧力

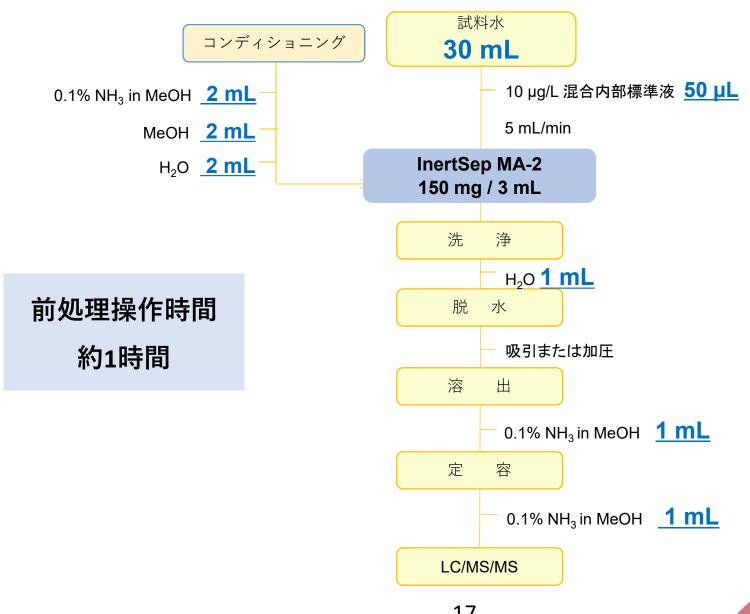
Delayカラム装着圧力を比較した。

高純度アクティブカーボン型Delayカラムは、圧力が上がらなかったため、 分析カラムや装置への負荷を軽減できると考えらえる。


Delayカラム	分析カラム (InertSustain C18 HP) (3 μm 150 × 2.1 mm I.D.)	圧力
無し	(4.1) mm (5.1) mm (5.1)	19.8 MPa
Delay Column for PFAS	A Company of A Com	19.8 MPa
一般的なDelayカラム (ODS) (3 µm 50 × 2.1 mm I.D.)	(A.Y.) was 65	23 MPa

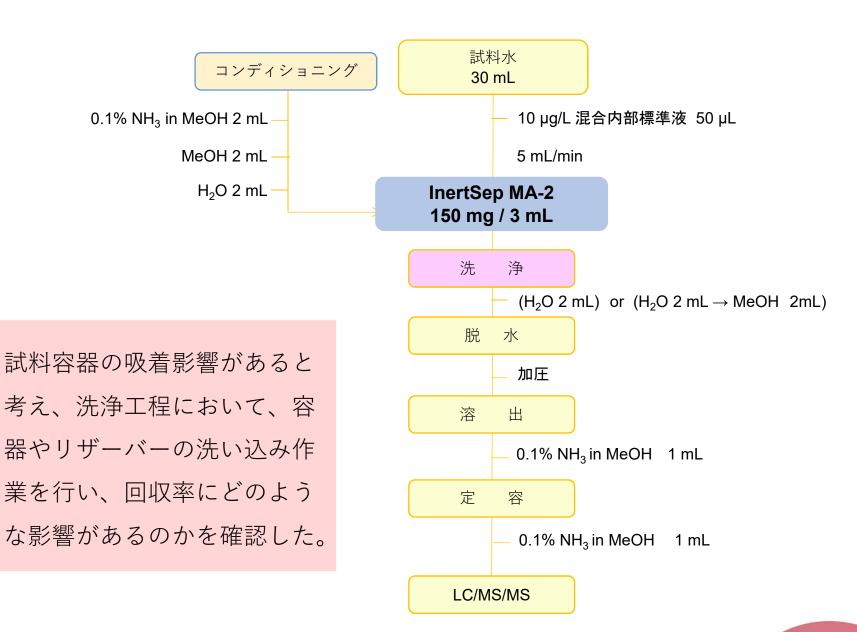
検討2:少充填量陰イオン交換固相抽出 カラムを用いたPFAS前処理


PFAS前処理に用いる固相抽出カラムの選択


固相抽出フロー

(別添4水質管理目標設定項目に係る標準的な検査方法 目標31)

少充填量陰イオン交換固相抽出カラムによる固相抽出フロー


回収試験結果

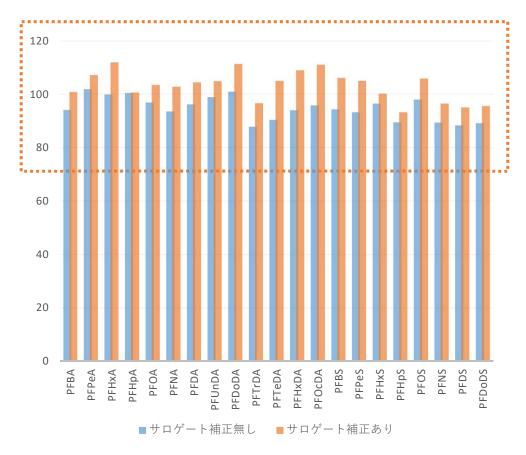
	成分名	炭素数	10 ng/	′L(n=5)
)	火糸奴	回収率(%)	再現性(%)
	PFBA	C4	96	8
	PFPeA	C5	97	8
	PFHxA	C6	96	9
	PFHpA	C7	106	9
	PFOA	C8	93	18
	PFNA	C9	98	13
PFCAs	PFDA	C10	83	18
	PFUnDA	C11	63	20
	PFDoDA	C12	40	14
	PFTrDA	C13	39	11
	PFTeDA	C14	44	8
	PFHxDA	C16	65	13
	PFOcDA	C18	80	10
	PFBS	C4	104	15
	PFPeS	C5	98	12
	PFHxS	C6	98	17
DEACC	PFHpS	C7	90	18
PFASs	PFOS	C8	90	18
	PFNS	C9	69	24
	PFDS	C10	52	24
	PFDoDS	C12	39	16

青枠は回収率70%以下

前処理フロー 一容器洗い込み効果の検討ー

容器洗い込み効果の検討結果 -PFAS21成分-

	成分名	炭素数	精製水洗い込 み(%)	精製水+メタ ノール洗い込 み (%)
	PFBA	C4	77	96
	PFPeA	C5	86	90
	PFHxA	C6	86	90
	PFHpA	C7	85	101
	PFOA	C8	84	95
	PFNA	C9	90	105
PFCAs	PFDA	C10	85	85
	PFUnDA	C11	70	89
	PFDoDA	C12	69	93
	PFTrDA	C13	60	92
	PFTeDA	C14	58	89
	PFHxDA	C16	62	89
	PFOcDA	C18	72	97
	PFBS	C4	75	88
	PFPeS	C5	71	79
	PFHxS	C6	72	82
PFASs	PFHpS	C7	75	82
PFASS	PFOS	C8	69	87
	PFNS	C9	77	88
	PFDS	C10	71	93
	PFDoDS	C12	55	93



精製水の洗い込みでも効果は見られたが、精製水+メタノールによる容器の洗浄を行うことで、すべてのPFASで70%以上の回収率が得られた。

添加回収試験結果(水道水)

		サロゲート	 へ補正無し	サロゲーΙ	ト補正あり
		平均値	再現性	平均值	再現性
		(%)	(%)	(%)	(%)
	PFBA	94	9	101	8
	PFPeA	102	5	107	6
	PFHxA	100	5	112	5
	PFHpA	100	5	101	3
	PFOA	97	11	103	10
	PFNA	93	10	103	12
PFCAs	PFDA	96	5	104	5
	PFUnDA	99	3	105	11
	PFDoDA	101	5	111	6
	PFTrDA	88	10	97	6
	PFTeDA	90	5	105	13
	PFHxDA	94	3	109	10
	PFOcDA	96	6	111	12
	PFBS	94	10	106	8
	PFPeS	93	8	105	8
	PFHxS	96	8	100	6
PFASs	PFHpS	89	9	93	8
PFASS	PFOS	98	10	106	16
	PFNS	89	7	96	12
	PFDS	88	6	95	9
	PFDoDS	89	6	96	4

21成分すべての**PFAS**で**80~120%**の回収 率が得られた。

(10 ng/L n=5)

まとめ

まとめ

検討1: Delayカラムの検討

✓ 高純度アクティブカーボンビーズ型Delayカラムを用いることで、移動相や 装置由来のPFASブランクを低減できた。

検討2:少充填量陰イオン交換固相抽出カラムを用いたPFAS前処理

- ✓ 少充填量陰イオン交換固相抽出カラムを用いることで、前処理時間の短縮が 可能となった。
- ✓ 前処理検討の際に炭素数が多いPFASの低回収率が問題となったが、試料容器の 洗い込み操作を実施する事で、回収率結果が改善した。